
Please log into ETH Gitlab
If you have never logged in, your account doesn’t exist, and
we can’t give you access rights to your team’s code. :(

https://gitlab.ethz.ch

https://gitlab.ethz.ch

VIScon Hackathon Workshop
An introduction to the VIS infrastructure

VIS infrastructure?
The VIS runs apps

coffee
statistics

VIS
website

ampel
infoscreen

exam
collection

VIS infrastructure?
The VIS runs apps

These apps are developed by
volunteers in the CAT

coffee
statistics

VIS
website

ampel
infoscreen

exam
collection

VIS infrastructure?
The VIS runs apps

These apps are developed by
volunteers in the CAT

The apps run on some servers
owned by VIS and maintained by
the CIT

coffee
statistics

VIS
website

ampel
infoscreen

exam
collection

VIS infrastructure?
When the CAT members make
changes, these changes are
automatically compiled and
uploaded to the servers (deployed).

Since this process is automatic and
happens continuously, it is called
continuous deployment (CD), or
sometimes continuous integration
(CI).

coffee
statistics

VIS
website

ampel
infoscreen

exam
collection

M
AG

IC

Why do you care?
At the VIScon Hackathon, you will build VIS apps :D

They will run on our infrastructure and make use of our
continuous deployment process

This means your apps have to follow some standards -
otherwise our continuous deployment will be confused.

It will be helpful for you if you know how that works ;)

The VIS App Standard ™
https://documentation.vis.ethz.ch/

● Your app runs in docker and it has to build on top of one
of the VIS base docker images

● Your app should make use of cinit to start itself
● Your code’s git repository contains a CI config file
● Your repository has the two branches “production” and

“staging” - this we will prepare for you
● Your code is hosted on the ETH gitlab and connected to

the VIS CI runner - this we will also prepare for you

https://documentation.vis.ethz.ch/

Interactive Workshop
● Go to https://gitlab.ethz.ch/viscon19
● Find your team’s repository
● Clone your repo to your local machine

The example app is a very simple python webserver that
serves a webpage which just says “Hello World”. We will now
deploy this app onto the VIS infrastructure, just like you will
do at the hackathon.

https://gitlab.ethz.ch/viscon19

Step by step - create Dockerfile
You have coded up your app - now you want to dockerize it

For this, you need to create the Dockerfile:

FROM registry.vis.ethz.ch/public/base:charlie

RUN apt install -y python3

ADD src /app

EXPOSE 80

Step by step - create cinit file
Docker still doesn’t know how to execute your app. We use
cinit for that. Cinit is already present in your docker image
and just needs to be configured. This is done in a yaml file,
we call it cinit.yml:

programs:
 - name: server
 path: python3
 args:
 - "-u"
 - /app/hello_vis.py
 - 80
 user: app-user
 group: app-user
 capabilities:
 - CAP_NET_BIND_SERVICE

Step by step - add cinit file to docker
Don’t forget to add the cinit config file to your docker image:

FROM registry.vis.ethz.ch/public/base:charlie

RUN apt install -y python3

COPY cinit.yml /etc/cinit.d/demo.yml

ADD src /src
EXPOSE 80

Step by step - build docker image
At this point you can build your docker image

You don’t need to do this, but it can be helpful for testing
whether your Dockerfile is correct.

docker build .

Step by step - create .gitlab-ci.yml file
Now we have to create the CI config file, which tells our
continuous deployment process how to handle your app. The
file is called .gitlab-ci.yml

You can use the template file .gitlab-ci.yaml.template -
simply move it to the correct location.

Step by step - create .gitlab-ci.yml file
The top of the file looks something like this:

variables:
 VIS_CI_APP_NAME: "vct-x"
 VIS_CI_DEPLOYMENT_SUBDOMAIN: "x"

Please, never change your app name or subdomain. Things
will break, and then Tech Support will be very sad.

 Don’t make Tech Support sad.

Step by step - push to gitlab
With your Dockerfile, cinit config, and .gitlab-ci.yml files
ready, all you need to do is push to the repository.

Your “build pipeline” will automatically be run, and your app
will be online at team-name.svis.ethz.ch

“svis.ethz.ch” is the staging environment of the vis. This is
where we test our apps before moving them to “vis.ethz.ch”,
where people will actually use them.

 At VIScon, you will only work in staging.

If it’s not working...

Your app was not deployed!

Check your .gitlab-ci.yml file and
your Dockerfile. See the build
logs on Gitlab.

Your app was deployed, but it
failed to start or crashed!

Check your cinit.yml file and
your code. See the app logs on
logs.vis.ethz.ch

Check your app’s build logs
The logs of the build process of your application can be
viewed on Gitlab.

Navigate to “CI/CD” -> “Pipelines”. You can click on any of the
stages (little circles) to view the logs of that stage.

There’s a lot of “machine poop” but somewhere near the top
(under the green “do_default_build” line) you should find the
output of the docker build command.

Check your app’s logs
The logs of your deployed application are available at

https://logs.vis.ethz.ch

You can log in with your VIS credentials (not NETHZ!), or if you
don’t have any, you can use “testuser” with password
“testuser” (available only during VIScon ;))

Note that it can take up to a few minutes for your logs to
appear.

https://logs.vis.ethz.ch

Questions so far?

visdev
How can you try out your app locally,
without pushing and waiting for the
continuous deployment process?

VIS
website

ampel
infoscreen

exam
collection

visdev
How can you try out your app locally,
without pushing and waiting for the
continuous deployment process?

visdev allows you to run any app that
adheres to the VIS app standard on
your local machine.

VIS
website

ampel
infoscreen

exam
collection

local
exam

collection

Step by step - install visdev
https://documentation.vis.ethz.ch/visdev.html

To install visdev, run the following (in a separate folder):

git clone https://gitlab.ethz.ch/vis/cat/visdev.git
cd visdev
python3 -m venv .venv
. .venv/bin/activate
pip install --upgrade .

https://documentation.vis.ethz.ch/visdev.html

Step by step - run your app
You now have access to the visdev command. Switch back to
your forked test repository. You can now run

visdev test .

This will start your app, and you can access it at

http://localhost:8080

Questions so far?

Database
You cannot store files in a docker
container - they will disappear on
the next restart.

If you need to store data
permanently, you should use a
database.

The VIS infrastructure offers a
database that all apps can use.

exam
collection

Database

coffee
statistics

Database
If you want to get access to a
database, you need to tell the
continuous deployment process
about it.

The VIS offers two database
flavours: PostgreSQL and MySQL
(MariaDB).

exam
collection

Database

coffee
statistics

Step by step - modify .gitlab-ci.yml
To tell the deployment process about your database needs,
you have to modify .gitlab-ci.yml:

variables:
 VIS_CI_APP_NAME: "vct-x"
 VIS_CI_DEPLOYMENT_SUBDOMAIN: "x"
 VIS_CI_ENABLE_POSTGRES: "true"

We recommend PostgreSQL. If, however, you really want to
use MySQL (MariaDB) instead, you can ask Tech Support
about it during the Hackathon.

Step by step - use the database
To actually interact with your database from within your
code, you can use a library for PostgreSQL. You will most
certainly find something for your preferred programming
language.

For this workshop, we’ve provided an example in
hello_vis_database.py. Please rename that file to hello_vis.py
(replacing the previous file).

Step by step - add new dependencies
Our Python code is now using additional libraries. We need
to make sure they are available inside our Docker container.

FROM registry.vis.ethz.ch/public/base:charlie

RUN apt install -y python3 python3-pip

COPY requirements.txt /requirements.txt
RUN pip3 install -r /requirements.txt

COPY cinit.yml /etc/cinit.d/demo.yml
ADD src /app
EXPOSE 80

Step by step - environment variables
One last piece is missing: To interact with the database, you
need to know on which URL and port it is, and you need an
user and password to log in.

Your app receives all this information through environment
variables. That way, it is always up to date.

 RUNTIME_POSTGRES_DB_SERVER
 RUNTIME_POSTGRES_DB_PORT
 RUNTIME_POSTGRES_DB_NAME
 RUNTIME_POSTGRES_DB_USER
 RUNTIME_POSTGRES_DB_PW

Step by step - add env vars to cinit
The variables are injected in your container by the continuous
deployment process, but cinit removes them again for safety
reasons!

You need to tell cinit that you want these variables. At the
end of your cinit config, add:

 capabilities:
 - CAP_NET_BIND_SERVICE
 env:
 - RUNTIME_POSTGRES_DB_SERVER:
 - RUNTIME_POSTGRES_DB_PORT:
 - RUNTIME_POSTGRES_DB_NAME:
 - RUNTIME_POSTGRES_DB_USER:
 - RUNTIME_POSTGRES_DB_PW:

Step by step - read the env vars
In Python, you can now read environment variables like so:

import os

POSTGRESQL_HOST = os.environ["RUNTIME_POSTGRES_DB_SERVER"]
POSTGRESQL_PORT = os.environ["RUNTIME_POSTGRES_DB_PORT"]
POSTGRESQL_DB = os.environ["RUNTIME_POSTGRES_DB_NAME"]
POSTGRESQL_USER = os.environ["RUNTIME_POSTGRES_DB_USER"]
POSTGRESQL_PASS = os.environ["RUNTIME_POSTGRES_DB_PW"]

Step by step - test it locally
Now, your app isn’t able to run unless these environment
variables exist. How can you test it locally?

Don’t worry! visdev got you covered!

If you use visdev, everything will be set up right, and you will
even have access to a local database for testing.

Try running the app locally with visdev test and writing some
values to the database. They will persist even if you restart the
application!

Questions so far?

Servis
Some of the VIS apps provide useful
information to other VIS apps.

These apps are said to offer a
“servis”, and they all use the same
API conventions.

Apps communicate with servises
using the GRPC protocol.

exam
collection

People
API

ampel
infoscreen

coffee
statistics

Servis
If you want to use an existing
servis (e.g. the people API,
which you can use to create a
nethz login for your app), you
need to take some extra steps.

The continuous deployment
process needs to know about
all servis-es you use.

exam
collection

People
API

ampel
infoscreen

coffee
statistics

https://documentation.vis.ethz.ch/servis.html

https://documentation.vis.ethz.ch/servis.html

Step by step - add servis to .gitlab-ci.yml
Let’s add the servis information to .gitlab-ci.yml:

variables:
 VIS_CI_APP_NAME: "vct-x"
 VIS_CI_DEPLOYMENT_SUBDOMAIN: "x"
 VIS_CI_SERVIS_DEPENDENCIES: "people-api"
 VIS_CI_SERVIS_PYTHON_OUT: "./src/"

We use “PYTHON_OUT” because our project is in Python.

We also need to add the following line:

script: # this is already present
 - do_servis_generate
 - do_default_build # this is already present

Step by step
Now, when your app is deployed, it receives access to the
people-api servis.

But how do you use the people-api?

Step by step - generate servis files
To work with the servis in your code, you will need to
generate some helper files. This is done using the servis CLI
application, which you should now download:

https://ser.vis.ethz.ch/cli

Put the executable in your home directory. Then, run inside
your repository:

~/servis add people-api
~/servis generate

https://ser.vis.ethz.ch/cli

Step by step - use the servis in your code
The servis CLI application just created some python files for
the people-api servis. These we need to use in our app:

import people_pb2
import people_pb2_grpc

We now need to use a GRPC library to interact with the servis
for real. What this looks like depends on which programming
language you use.

 For this workshop, we’ve provided an example in
 hello_vis_servis.py. Please rename that file to hello_vis.py
 (replacing the previous file).

Step by step - add new dependencies
Our Python code is now using additional libraries. If you
haven’t already, make sure they are available inside your
Docker container.

FROM registry.vis.ethz.ch/public/base:charlie

RUN apt install -y python3 python3-pip

COPY requirements.txt /requirements.txt
RUN pip3 install -r /requirements.txt

COPY cinit.yml /etc/cinit.d/demo.yml
ADD src /app
EXPOSE 80

Step by step - environment variables
One last piece is missing: To interact with the servis, you need
to know on which URL and port it is, and you need an API
key.

Your app receives all this information through environment
variables, so that you don’t have to hard-code it. That way, it is
always up to date.

The variables are:

 RUNTIME_SERVIS_PEOPLE_API_SERVER
 RUNTIME_SERVIS_PEOPLE_API_PORT
 RUNTIME_SERVIS_PEOPLE_API_KEY

Step by step - add env vars to cinit
The variables are injected in your container by the continuous
deployment process, but cinit removes them again for safety
reasons!

You need to tell cinit that you want these variables. At the
end of your cinit config, add:

 capabilities:
 - CAP_NET_BIND_SERVICE
 env:
 - RUNTIME_SERVIS_PEOPLE_API_SERVER:
 - RUNTIME_SERVIS_PEOPLE_API_PORT:
 - RUNTIME_SERVIS_PEOPLE_API_KEY:

Step by step - read the env vars
In Python, you can now read environment variables like so:

import os

API_SERVER = os.environ["RUNTIME_SERVIS_PEOPLE_API_SERVER"]
API_PORT = os.environ["RUNTIME_SERVIS_PEOPLE_API_PORT"]
API_KEY = os.environ["RUNTIME_SERVIS_PEOPLE_API_KEY"]

Step by step - test it locally
Now, your app isn’t able to run unless these environment
variables exist. How can you test it locally?

Don’t worry! visdev got you covered!

If you use visdev, everything will be set up right, and you will
even have access to a “fake” people-api for local testing.

Try running the app locally with visdev test and searching for
the user “adamif”. Now try searching for your own nethz.

A note on nethz login
The people-api can be used to provide a nethz login page for
your application. It has authorization support.

However, to make the login persistent, you will need some
extra code (e.g. session management).

We’ll leave this for you to figure out during the Hackathon ;)

Questions now?

See you at VIScon!

